新闻中心

18902120617

公司新闻

天津减速机产品的优缺点以及发展趋势

发布时间:2023-05-16 22:44:34

各种减速机的优缺点以及发展趋势  概要:论述各种减速机的优缺点以及发展趋势  减速机是一种动力传达机构,利用齿轮的速度转换器,将电动机的回转数减速到所要的回转数,并得到较大转矩的机构。在目前用于传递动力与运动的机构中,减速机的应用范围相当广泛。几乎在各式机械的传动系统中都可以见到它的踪迹,从交通工具的船舶、汽车、机车,建筑用的重型机具,机械工业所用的加工机具及自动化生产设备,到日常生活中常见的家电,钟表等等.其应用从大动力的传输工作,到小负荷,精确的角度传输都可以见到减速机的应用,且在工业应用上,减速机具有减速及增加转矩功能。因此广泛应用在速度与扭矩的转换设备。减速机的作用主要有:    1)降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速机额定扭矩。    2)减速同时降低了负载的惯量,惯量的减少为减速比的平方。大家可以看一下一般电机都有一个惯量数值。  减速机的工作原理    减速机一般用于低转速大扭矩的传动设备,把电动机,内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。  减速机的种类    减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩。它的种类繁多,型号各异,不同种类有不同的用途。减速器的种类繁多,按照传动类型可分为齿轮减速器、蜗杆减速器和行星齿轮减速器;按照传动级数不同可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥-圆柱齿轮减速器;按照传动的布置形式又可分为展开式、分流式和同轴式减速器。以下是常用的减速机分类:          蜗轮蜗杆减速机的主要特点是具有反向自锁功能,可以有较大的减速比,输入轴和输出轴不在同一轴线上,也不在同一平面上。但是一般体积较大,传动效率不高,精度不高。谐波减速机的谐波传动是利用柔性元件可控的弹性变形来传递运动和动力的,体积不大、精度很高,但缺点是柔轮寿命有限、不耐冲击,刚性与金属件相比较差。输入转速不能太高。行星减速机其优点是结构比较紧凑,回程间隙小、精度较高,使用寿命很长,额定输出扭矩可以做的很大。但价格略贵。   20世纪70-80年代,世界上减速器技术有了很大的发展,且与新技术革命的发展紧密结合。通用减速器的发展趋势如下:    ①高水平、高性能。圆柱齿轮普遍采用渗碳淬火、磨齿,承载能力提高4倍以上,体积小、重量轻、噪声低、效率高、可靠性高。     ②积木式组合设计。基本参数采用优先数,尺寸规格整齐,零件通用性和互换性强,系列容易扩充和花样翻新,利于组织批量生产和降低成本。  
 
      ③型式多样化,变型设计多。摆脱了传统的单一的底座安装方式,增添了空心轴悬挂式、浮动支承底座、电动机与减速器一体式联接,多方位安装面等不同型式,扩大使用范围。    促使减速器水平提高的主要因素有:     ①理论知识的日趋完善,更接近实际(如齿轮强度计算方法、修形技术、变形计算、优化设计方法、齿根圆滑过渡、新结构等)。    ②采用好的材料,普遍采用各种优质合金钢锻件,材料和热处理质量控制水平提高。     ③结构设计更合理。     ④加工精度提高到ISO5-6级。    ⑤轴承质量和寿命提高。    ⑥润滑油质量提高。     自20世纪60年代以来,我国先后制订了JB1130-70《圆柱齿轮减速器》等一批通用减速器的标淮,除主机厂自制配套使用外,还形成了一批减速器专业生产厂。目前,全国生产减速器的企业有数百家,年产通用减速器25万台左右,对发展我国的机械产品作出了贡献。     20世纪60年代的减速器大多是参照苏联20世纪40-50年代的技术制造的,后来虽有所发展,但限于当时的设计、工艺水平及装备条件,其总体水平与国际水平有较大差距。    改革开放以来,我国引进一批先进加工装备,通过引进、消化、吸收国外先进技术和科研攻关,逐步掌握了各种高速和低    速重载齿轮装置的设计制造技术。材料和热处理质量及齿轮加工精度均有较大提高,通用圆柱齿轮的制造精度可从JB179-60的8-9级提高到GB10095-88的6级,高速齿轮的制造精度可稳定在4-5级。部分减速器采用硬齿面后,体积和质量明显减小,承载能力、使用寿命、传动效率有了较大的提高,对节能和提高主机的总体水平起到很大的作用。 我国自行设计制造的高速齿轮减(增)速器的功率已达4.2万千瓦 ,齿轮圆周速度达150m/s以上。但是,我国大多数减速器的技术水平还不高,老产品不可能立即被取代,新老产品并存过渡会经历一段较长的时间。    发展趋势:模块系统可分为开式和闭式两大类。  开式系统的特征是:足够数量和品种的模块,以直接或间接的方式相互连接,同品种模块可以不受限制地重复出现,从而可组成无限多的组合;但当模块的品种和数量有限时,则组合数也是有限的。例如:货币、文字、供电、管道、块规、碟簧等系统;悬挂式运输装置是一种较复杂的开式系统,它由直轨、弯轨、道叉、底架、吊架、起落架和末端板等组成,适当地选择前述模块便可组成不同长度和形状的运输线。 闭式系统的特征是:有限数量和品种的模块,不能或只能有限次重复选用同品种模块,以构成有限种组合的模块系统。实际组合时应考虑模块间的相容性,需要和加工的可能性等。模块化机床、台灯等均为闭式系统。  闭式系统和一定条件下的开式系统模块的可能组合数可用组合与排列的数学方法进行计算。设系统的品种数为N、系统的模块总数为M、每种产品所需的模块
 
    总数为K、每种产品所需的相同模块数为Z、系统模块的组合数为C(不计顺序)、系统模块的排列数为A(考虑组合并区分不同的排列顺序)、综合组合数为P。   模块系统的布局和连接方式、互换性和相容性 模块在产品中的功能不同,它与其它模块的组合关系也不同,接某一模块所连接的其它模块的数量不同,可分为线性连接(单、双向)、平面连接(四向)和立体连接;按模块相关性的不同,可分为:刚性连接——有直接的装配系统,并分为静、动两种连接;柔性连接——具有间接、物理相关条件,而无几何相关条件的连接。  9 模块综合的层次和产品的可用组合数  产品分级模块化设计比产品由基本模块构成的常规模块化设计受到的约束更少,且可充分地利用现代化设计、制造与管理方法。分级模块系统中,产品和中间各级模块是由其相邻的下一级子(分)模块构成的,且其结构或性能参数均取决于构成它的各个子模块。子模块在产品中的层次愈低,对产品的构成(变形)数的影响愈大,因此,在进行分级模块化系统的模块综合时,应由***低层次的模块开始,逐级向高一级模块综合,直至构成产品。  分级模块化产品的模块综合示意图多数为树枝状结构,且各树枝的长短(层次)不一,其理论组合数为各末端模块的同位模块数之积,而不论末端处于何层次。当考虑参数匹配(不同部分的同类参数应一致)、功能无冗欠等因素,则可用组合数将大为减少。     某磨床尾架,其壳体A有4种中心高和3种莫氏顶尖可供选择;其套筒B与防护罩C均有4种行程尺寸和3种莫氏项尖可供选择,操作手柄D有2种结构4种尺寸可供选择;触点传感器E有4种行程可供选择。这五组模块共33个参数,则A、B、C三组模块各有4×3=12种组合,D、E分别有8、4种组合;尾架的总组合数为A=12×12×12×8×4=55296。考虑不同部分不同模块的同类参数应该一致,则有4种中心高、4种行程、3种顶尖、2种手柄结构,则尾座的可用组合数A1=4×4×3×2=96种,仅为理论组合数的576分之一。  模块化设计中的一项基本工作是首先进行减速器基本模块的划分。根据模块划分理论,基本模块应按其功能进行划分,一般地减速器的基本模块可划分为: (1)壳体或箱体模块  对一般齿轮箱,即为其支承箱体,它是减速器的一个主要模块,轴系、齿轮的支承、封闭都由其完成。对行星齿轮箱,一般称之为壳体模块。  (2)齿轮模块  系列产品中按确定的速比系列和和组合要求而选定的基本模块,齿轮副要求***大限度模块化,以减少齿轮数目。 (3)端盖模块  包括通盖、闷盖模块。  (4)轴模块  包括光轴、空心轴、花键轴模块。  (5)驱动单元模块  包括电机(交流、直流、变频)、液压马达模块等。 (6)冷却风扇模块。  (7)轴承座模块  应用于伞齿轮齿轮箱及行星齿轮箱,和基本箱体或壳体模块构成完整的箱体模块。  (8)行星架模块  主要应用于行星齿轮箱系列。  (9)润滑装置模块  对需强制润滑的齿轮箱,此为一必需的模块。